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A Sommerfeld radiation condition (2.2) is proposed for problems requiring a prescribed 
open boundary. The equations must be hyperbolic in nature (although the author 
believes that they may also be good for some elliptic and parabolic problems). It is 
proven that the proposed condition was shown to be free of reflection for single wave 
propagation. Two severe tests were used to demonstrate the applicability of the open 
boundary condition: (i) the collapsing bubble, a dynamic event which excites many 
different internal gravity waves. The results show minimum distortion. (ii) The spatially 
growing K-H instability. This test differs from the previous one in that the only waves 
excited are those corresponding to the maximum unstable wavelengths. In this case, 
the maximum amplitude is reached at the open boundary. As it has been shown, the 
open boundary condition (2.2) produces minimum distortion. 

1. INTRODUCTION 

The increasing interest in the numerical simulation of local mesoscale processes 
in the atmosphere as well as in the ocean presents a nontrivial difficulty in pres- 
cribing boundary conditions for the finite area of the numerical integration. This 
difficulty arises due to our lack of knowledge of the dynamical behavior of the 
environment in the region outside this area. Obviously this type of problem is not 
new in fluid dynamics. A few examples in which some kind of open boundary 
condition must be prescribed include flows over obstacles, mountain flows, wake 
instability flows, etc. 

What is needed in flow problems dominated by advection and/or wave motion 
is an “open” boundary condition; that is, a boundary condition which allows 
phenomena generated in the domain of interest to pass through the boundary 
without undergoing significant distortion and without influencing the interior 
solution. The open boundary condition problem is also relevant to the nesting 
problem in which a fine mesh model is nested in a model with coarser mesh. If 
waves are generated in the fine mesh region and cannot be resolved in the coarse 
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grid area due to lack of resolution, then some kind of open boundary condition 
must be applied in the borders of the tie mesh region. 

Obviously, since a physical law to prescribe the boundary condition in an open 
domain for any general problem does not exist, some kind of extrapolation must be 
used in order to obtain such boundary conditions. The appropriate type of extra- 
polation will depend largely upon the character of the equations to be solved(hyper- 
bolic, elliptic, or parabolic). The equations of motion for the description of atmos- 
pheric dynamics could behave like any of the three types of equations mentioned 
above. Our interest in the present work is focused on mesoscale problems, wave 
propagation, and any disturbances that are generated in the domain of integration, 
and in time leave the systems; phenomena which are characterized by hyperbolic 
systems. A variety of methods have been developed to achieve open boundary 
conditions for such systems. Without describing the well-known periodic boundary 
condition, examples of the other boundary conditions are: 

(i) Sommerfeld radiation condition; 
(ii) one-side differencing method; 
(iii) Newtonian damping (“sponge”) or viscous damping at the boundaries. 

Condition (i) has been most widely used in theoretical studies because the 
dispersion characteristics of the waves needed to prescribe the Sommerfeld radiation 
condition are known as follows: 

@&at) + c&! = 0, (1.1) 

where 4 is any variable, and C is the phase velocity of the waves. The numerical 
equations for mesoscale processes are nonlinear and the dispersion characteristics 
are not generally known. One method used by Kreiss [l] for avoiding this problem 
assumes that the characteristics of the waves will have a slope equal to dx/dt (dx 
and d t being the spatial and temporal gridsize, respectively). Then, the extrapolated 
variable I$ at the present time step T at the boundary point JM will be given by: 

cp(JA4) = 2#+(JM - 1) -Q-Z(Jit4 - 2) (1.2) 

This relation is similar to the one obtained from Eq. (1. l), if C = LIx/LI~ or that 
the phase velocity, C, is equal to the maximum feasible numerical velocity Ax/At; 
since the finite leap-frog difference representation of Eq. (1.1) is: 

@(JM) - qv(JM) c @(JM) + q-2 
2Llt =-dx [ 2 (04) - +-l(JM - 1)],1 (1.3) 

1 The form used in Eq. (1.3) to express 4. is such that it involves only points of the same numeric- 
al mode, since it is known that such schemes such as leap-frog can produce an artificial modal 
splitting. In such cases, the boundary condition mixes these modes in a different way than the 
interior equation, then strong reflection can occur. 
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where, in particular, if C = dx/dt, then Eq. (1.3) becomes: 

lp(JM) = $lF(JM - 1). (1.4) 

The previous boundary conditions (1.2) or (1.4), performs reasonably well when 
the numerical solution is characterized by one single wave with phase velocity 
approximating Ax/At. However, if this is not the case, reflection will occur at the 
boundaries. A modification of the Kreiss method was shown by Pearson [2] and 
others in which C is estimated from the linearized dispersion relation, taking C to 
be the phase velocity to the dominant wave. Again, this method depends on 
knowing a dispersion relation that, as a rule, is not known in complicated geo- 
physical flows. 

The one-side differencing methods (ii) will not be described in detail here since 
they were very much in use in the early 1960’s. They were used with some success 
in problems involving strong advection and smooth disturbances at the boundary; 
however, with large disturbances, reflection and instabilities developed very 
quickly. 

In group (iii) viscous damping has been used with some success in mesoscale 
modeling by Bushby and Timpson [3]. However, the large variation of viscosity at 
the boundary produces some reflections and the method wastes a significant 
number of gridpoints close to the boundary. Quite recently, Piacsek (personal 
communication, Lindman [4]), has developed a method that uses Newtonian 
damping to force the solution to some known boundary condition.) The dis- 
advantage here is that for the damping to be gradual, several gridpoints are wasted. 
Also, waves traveling tangential to the boundary may be distorted by spatial 
variation of damping. In the next section, a simple boundary condition will be 
formulated that has been shown to be efficient in minimizing reflection in quite 
dissimilar situations. A demonstration of the effectiveness of the boundary condi- 
tion in several flow problems is given in Sections 4 and 5? with a description of the 
model used given in Section 3. 

2. OPEN BOUNDARY CONDITIONS 

The suggested approach to be employed here involves use of the Sommerfeld 
radiation condition (Eq. (1.3)) at the boundary; but in a form different from that 
previously discussed by Kreiss and Pearson, among others. Instead of fixing a 
constant value for the phase velocity, we numerically calculate a propagation 
velocity from the neighboring grid points, using the same Eq. (1.3) for each variable 
to calculate C. 

[rp(JM - 1) - @2(JM - I)] 
cQ5 = - [@(JM - 1) + rjF(JM - 1) - f-l(JM - 2)] $7’ (2-l) 
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and then to determine the boundary gridpoint the following relation is used: 

[l - (W-4 Cdl 7-I 
++v”) = [l + (Al/AX) C,] + 

2WAx) Cd 
(JM) + [I + (At/Ax) C,] 

(p(&f - 1). (2.7) 

In this formulation, we require that 0 < C < ox/At. Then, for the limiting outflow 
condition, C, = Ax/&, Eq. (2.2) gives 

$fJ’+YJM) = #JqJM - l), (2.3) 

which is similar to the condition (1.2) for pure waves. Conversely, in the limit 
C, = 0, then 

@+i(JM) = either @-i(JM) 

= or 4 boundary. 
(2.4) 

No information has come from the interior solution, so we must regard this as 
inflow information, to be prescribed from a previous time step or as a boundary. 

It should be pointed out that since each atmospheric variable I# is determined by 
a different equation, the numerical propagation velocities C, can be different from 
each other and must be computed separately. Also the expressions (2.3) and (2.4) 
shows the limiting values that will take any velocity. The final form for each of 
these velocities will then be: 

c, = Ax/At, if -&/& > Ax/At, 
G = -~tlhc 9 if 0 < -&/& < Ax/At; (2.5) 
c, = 0, if -&/de < 0. 

Note that this boundary condition does not depend upon global quantities, such as 
mean flow properties, for the purpose of determining whether inflow or outflow 
exists at a given point on the boundary. The condition should thusly prove to be 
very useful for cases in which a weak mean flow is present and an initial inflow 
boundary condition could be changed to an outflow condition due to the presence 
of upstream propagating waves in the domain of integration. 

The boundary condition (2.2) is nonlinear in nature. Therefore, a theoretical 
analysis of its reflection characteristics is not possible for the general case. We wilI 
demonstrate the nonlinear behavior of the boundary condition by using it in 
several numerical solutions in Sections 4 and 5. However, for the present, we will 
prove that a single wave will not be reflected by this boundary condition. 
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Using (2.1) and (2.2), we obtain 

tp+l(JM) = $yJM - 1) - +-$M4 - 2) +-l(JM) 
~‘-yJM - 1) - $F(JM - 2) 

f#‘(JM - 1) - qw(JM - 1) _ 

cp-y.M - 1) - +-lcJM _ 2j +(JM - 1). (2.6) 

It should be noted that if @(JM - 1) = r#?-l(JM - 2) then @+l(JM) = r$ 
(Jil4 - I), this is the limiting case in which the phase speed is precisely C, = 
Ax/At. 

To see that the boundary condition (2.6) gives no reflection for a single wave 
component, it is sufficient to substitute into it the wave: 

+(J) = d,, exp(i(KJAx - wtdt)), (2.7) 

which satisfies (2.6) in an identical fashion. This is not surprising, since the wave 
(2.7) has a constant phase speed, which the scheme measures at time T - 1 and 
then applies at time T. Until now, only the one-dimensional problem has been 
discussed. However, the same condition applies for two- and three-dimensional 
problems. The extrapolation (2.2) is valid in so far as the propagation speed C, in 
(2.7) is taken to be the normal component to the open boundary. Suppose that 4 
is expressed as a three-dimensional wave 

9 = & exp(i(kx + Iy + y-’ - wt)), cw 

where k, I, and y are the three components of the wavenumber vector. k = ki + 
lj + ‘yp. In this case any of the following three relations is valid: 

@J~Pt> + Ci@jw,*) = 0. (2.9) 

Note that the product P(a/ax,) is not an indication of summation but of the 
individual product in the normal direction to the boundary where Ci = (w/hi) and 
ki is the component of the wavenumber in the Xi direction. The relation (2.9) is, of 
course, the Sommerfeld radiation condition (1.1) from which the extrapolation (2.2) 
was derived. We must conclude then that this extrapolation is generally true for any 
dimensions. 

3. MODEL DESCRIPTION 

The numerical model described below has been designed to simulate the behavior 
of a two-dimensional stratified fluid in a rectangular container. In the examples 
treated in this paper, the container has a rectangular cross section with width L 
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and height H, and is filled with a stratified fluid (linear in the collapsing bubble 
experiment and with a hyperbolic tangent profile for the Kelvin-Helmholtz 
instability). The fluid is incompressible with the Boussinesq approximation 
assumed. 

The condition of two-dimensionality allows us to formulate the Navier-Stokes 
equations in terms of stream function t,G and vorticity 5. The resulting equations 
may be written as follows: 

qat = J(+, 5) + (aqax) + VvVL (3.1) 

aqat = J(#J)+ VIW (3.2) 

CylJ = 5, (3.3) 

where 19 is the potential temperature, and v and K are the eddy viscosity and 
diffusivity respectively, as defined in Orlanski and Ross [5]. 

The finite-difference formulation of the above equations is identical to the 
scheme used by Orlanski and Ross except for the method of solution of the Poisson 
equation (3.3). This method of solution is a simple AD1 technique similar to that 
described by Peaceman and Rachford [6]. The gridnet is made up of 51 gridpoints 
in the vertical, and 42 or 66 gridpoints in the horizontal. 

The boundary conditions used on the rigid top (2 = H) and bottom (Z = 0) are: 

# = 5 = 0 and 6, = 0, ) (3.4) 

where 8, is the local initial lapse rate for temperature. 
We apply the open boundary condition (2.2) described in the previous section to 

the left and right boundaries, noting that the propagation velocities C, and C, were 
calculated from Eq. (2.5) for temperature and vorticity. The value for stream 
function at the boundary is calculated from the same relation (2.2) but with the 
vorticity propagation velocity C, used. 

Further details regarding boundary condition treatment will be given in the 
succeeding sections in which the modeling of specific experiments will be described. 

4. COLLAPSE OF A MIXED REGION IN A STRATIFIED FLUID 

In this section we will discuss the simulation of the collapse of a two-dimensional 
mixed region immersed in a stratified fluid, this is typical of a homogeneous 
density bubble immersed in a fluid, density of which varies linearly with height 
(Young and Hirt [7]). Such a simulation provides us with an opportunity to 
compare solutions from our numerical model for two different container lengths; 
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41 Ax and 65 Ax, with open boundary conditions in each case. The ideal situation 
would be for the solution of the smaller region to exactly match the corresponding 
solution of the larger region in the region common to both. Figure 1 shows the 
initial temperature fields for the larger and smaller domains with dashed lines in 
the upper part of the figure enclosing the region common to both solutions. Most 
of the remaining figures are arranged in the same manner as Fig. 1. The figures in 
this section are divided into two groups: New Extrapolation (NE) (referring to use 
of the new boundary condition proposed in (2.2)) and Simple Extrapolation (SE) 
(for use of the simple outflow scheme (2.3)). 

FIG. 1. Contours of temperature using the new extrapolation (NE) at 10 time steps. The 
zeroes mark the midpoint in the horizontal (I) and the vertical (J) directions. The temperature 
field in the upper half of the figure is 65dx in the horizontal; the lower one is 41dx in the horizontal 
and both are 5Odz in the vertical. The dashed lines show the area which is common to both 
fields. 

The horizontal velocity Uafter ten time steps is shown in Fig. 2. The symmetrical 
maximum velocity to the left and right of the mixed region indicates that the initial 
tendency of the bubble is to collapse sideways. This abrupt change in the tempera- 
ture (density) pattern produces gravity waves which propagate outwards from the 
region of collapse. 
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FIG. 2. Similar to Fig. 1 but for U velocity. 

Figures 3 and 4 show the corresponding horizontal U velocity for 150 time steps, 
as waves and the collapsed region tend to spread out of the center regions. A simple 
outflow boundary condition at the boundaries is expected to perform well in a 
numerical simulation as shown in Fig. 4. 

At approximately 300 time steps, the maximum disturbances reach the open 
boundaries in the smaller domain. Some differences can be noticed in the tempera- 
ture field. However, the discrepancies are apparent in the U velocity field in Fig. 5, 
but quite obvious in the simple extrapolation in Fig. 6. The differences between the 
smaller and larger domains seen in Fig. 5 are not substantial and mainly affect the 
higher wavenumbers due to partial reflection at the boundaries. These high wave 
numbers are present because no appreciable damping was applied in this numerical 
simulation. In Fig. 6, the larger discrepancies between two solutions in the simple 
extrapolation case are generated because of the intensification of the reflection of 
small scale disturbances, since this particular extrapolation implies a constant 
phase velocity equal to flxldt. Then waves with smaller phase velocity will be 
reflected, 

The comparisons between the history records for the time fluctuation of tempera- 
ture are shown in Fig. 7 for NE and in Fig. 8 for SE. These were taken at a distance 
of L/4 from the left boundary and H/10 from the center line. Notice that the phase 



FIG. 3. As in Fig. 2 but contours of U VelocitY at 150 time steps. 

NE 

FIG. 4. As in Fig. 3 but for the simple extrapolation case. 
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FIG. 5. U velocity contours as in Fig. 2 at 300 time steps. 
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SE 

FIG. 6. As in Fig. 9 but for the simple extrapolation case. 
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NE (66) - 
NE (42) ---- 

FIG. 7. A comparison of history records of time variation of temperature between the new 
extrapolation 66 and 42 cases. The history checkpoint is at Z = -10 and .I = 5. 

I 

I=-10 
I J=5 / 
, SE (66) - 

SE (42) ---- 

TIME 

FIG. 8. The same as Fig. 11 but for the simple extrapolation case. 

of the disturbance is well simulated in both cases, but that the amplitudes begin to 
diverge toward the end of the record. One possible explanation of such behavior is 
that, in this particular experiment, the main dynamic region, (the collapsing bubble) 
is expelled from the interior domain through the boundaries by its own vorticity, 
implying that the advection field is moving with the source that generated it. Then 
when the bubble reaches the boundary and attempts to pass through, it will do so, 
but with a inevitable change in its advected velocity. This effect does not appear to 
produce considerable reflections. 

It is of interest to compare equivalent solutions with the open boundary condi- 
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tions NE and SE, and the solution that will be obtained if simple reflecting walls are 
used. Figure 9 shows three different solutions of the collapsing bubble at 800 time 
steps. (Note that this experiment is slightly different in geometry than the previous 
one. In this case, only the right half of the domain is calculated with a symmetry 
boundary condition used on the left boundary.) Figure 9(a) shows the temperature 
disturbance solution for the case with a rigid wall condition applied to the right 
boundary. Figure 9(b) exhibits the same field for the case of the simple boundary 
conditions SE, and Fig. 9(c) shows the field for the solution with the new boundary 

TEMPERATURE DISTURBANCE 
WO ‘IME STEPS1 

c) NE 

FIG. 9. Temperature disturbance at 800 time steps for different boundary conditions (a) 
rigid wall, (b) SE, (c) NE. 

condition NE. Comparison of these three solutions shows that NE produces a 
solution with the least disturbances inside the domain of integration, thereby 
implying that the open boundary condition NE allows energy to leave the domain 
with a minimum amount of reflection. 

In the previously discussed experiments in which both the left and right boundary 
conditions were of the “outfiow” type over the total length of the integration, both 
the SE and NE seem adequate to be used as boundary conditions. It is possible that 
the NE is slightly better than the SE, but the application of the former is con- 
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siderably more complicated. In this regard, we may then conclude that if outflow 
conditions are warranted at all times, the use of NE or SE will be equally satis- 
factory. However, outflow conditions for the entire integration are very difficult to 
dictate in a stratified fluid with a prescribed mean flow, unless the magnitude of the 
mean flow is always larger than the faster propagating waves generated inside the 
fluid. Usually this is not the case in geophysical problems, such as in the atmosphere 
or in the ocean, where the fluid may be subcritical at one time and supercritical at 
another time. At this point, waves which propagate downstream at one time may 
also propagate upstream the next time. Then the prescribed mean flow does not 
usually warrant outflow or inflow conditions which must be satisfied at all times. 
Under such conditions, NE since it calculates the local phase velocity and adjusts 
the inflow or outflow condition depending on the sign of the phase velocity, is 
expected to perform better than would a fixed extrapolation such as SE or a fixed 
condition that assumes inflow at all times. 

To illustrate these points, two basic experiments (a) and (b) were performed with 
the same initial conditions of the previous experiments: the collapsing bubble. The 
only difference is the inclusion of a constant mean flow with direction positive to 
the right (a) weak mean flow, li = (1/240)(dx/dt), and (b) strong mean flow 
U = (1/4)@x/dt). We compare the performance of NE with: case (a) SE on the 
right boundary (outflow), and case (b) SE in the right and left boundaries. 

The results are displayed in Fig. 10, which shows the vorticity squared integrated 
along the last five points close to each boundary 

Jh4 5 

p = x 1 ["(Z, .I) 
J=l I=1 

as a function of time. The results for case (a) are displayed on the left of Fig. 10, 
and case (b) on the right. 

First, case (a) will be explained. The solution NE shows a slight asymmetry from 
the left and right boundary which is obviously due to the small advective effect of 
the mean flow. However, the left and right boundary have a completely different 
behavior pattern for SE, since in this particular case the left boundary (inflow) 
variables were kept constantly equal to the initial values. The waves that propagate 
upstream are accumulated at this boundary, explaining the growth of the squared 
vorticity in this case. In the case of the strong mean flow, the NE solution still 
performs very well. As can be seen on the right of Fig. 10, the asymmetry between 
left and right boundary values of the vorticity squared is increased in comparison 
with case (a), this being due to the greater advective effect. In this last case, the SE 
solution (similar extrapolation in both right and left boundaries) shows that where 
there are strong outflow conditions (right boundary) the SE boundary condition 
performs very well but obviously behaves very poorly in the inflow condition at the 
left boundary. 
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FIG. 10. (a) The integrated squared vorticity for left and right boundaries as a function of 
time for a weak mean flow in (a) similar for (b) but for the strong mean flow (see text). 

From these previous results, we can conclude that for permanent outflow 
conditions, SE or NE are equally good. However, NE is far superior when the 
nature of the boundary condition changes in time, that being the more general case 
for open boundary conditions. 

In the next section, we will discuss the performance of NE when spatially 
growing waves are considered. As an example, we chose the Kelvin-Helmholtz 
instability. 

5. KELVIN-HELMHOLTZ INSTABILITY IN AN UNBOUNDED SHEAR FLOW 

A considerable amount of observational data in the atmosphere and in the 
ocean relates to Kelvin-Helmholtz (K-H) waves and their generation of turbulence. 
One of the most common assumptions in analytic and numerical studies of the 
K-H instability involves the use of periodic boundary conditions and the resulting 
need to relate the temporal growth of the periodic wave to the spatial growth at an 
actual unbounded K-H wave. The amplitude of the waves at the outflow boundary 
will be at a maximum, producing large disturbances at the extrapolated values. 
Most of the boundary condition schemes used previously were incapable of 
reproducing good results or were limited to small amplitude waves. 
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Here, we will demonstrate that the proposed scheme (2.2) can be used in these 
extreme conditions. A few different initial conditions have been studied; the results 
of which will be reported elsewhere. In this section, we will show one simple 
experiment to illustrate the use of the boundary condition given by Eq. (2.2). The 
initial temperature field T and x velocity U are prescribed as 

T = 15°C + 1 “C tanh(z/750 m), (5.1) 

U = 40 m/set + 20 mjsec tanh(z/750 m). (5.2) 

The minimum Richardson number that occurs in the center of the channel is 0.07; 
the height of the channel is 104 m, with 51 points evenly spaced in the vertical, and 
the two horizontal lengths used are 41 dx and 65 dx, with dx = 1000 m. The time 
interval, dt, is 5 sec. The inflow boundary is located at the left side. Note that the 
inflow condition of Eq. (2.2) will always set the current value (@) of the extra- 
polated variable to the value at @-2. This implies that if nondisturbances reach the 
left boundary from the interior, the inflow boundary will always retain the initial 
conditions. 

If one wants to prescribe some inflow boundary conditions, it is necessary only 
to replace r$‘--2 by the prescribed value. In the present case, we prescribe a small 
perturbation of stream function at the inflow boundary in order to excite the 
unstable waves. Another method which was used to disturb the solution over the 
entire domain with a random noise every 20 time steps. Since no significant dif- 
ferences could be found between these two methods (regarding the solution 
behavior at the open boundaries), we will discuss here only the solution with wave- 
like perturbation at the inflow boundary. 

The perturbation forcing at the boundary is cyclic with a period of 200 set 
(close to the period predicted by the linear K-H theory). After 100 time steps 
(500 set), a well-formed wave can be seen in the vertical velocity fields of Fig. 1 I. 
As before, the upper field corresponds to L = 65dx and the lower to L = 41dx. 
The waves propagate from left to right. The effect of the forcing extends only a few 
points away from the left boundary. In the interior region, the upper and lower 
solutions agree very well. The maximum unstable wavelength corresponds to 
A N 11. 400 km. It is interesting to note from these figures (and from the others to 
be shown) that the most unstable wavelength changes spatially from a slightly 
shorter value close to the left boundary, to the value mentioned above at the right 
boundary. The reason for this can be easily seen, The forcing that we prescribe 
does not exactly correspond to the period of the most unstable wave. Of course, 
waves with the same period and forcing are also unstable and will be excited in 
the vicinity of the boundary forcing. However, downstream of this forcing region, 
the most unstable K-H wave will grow until it dominates the forced mode. 

At the 200th time step (1000 set), the amplitude of the wave at the right boundary 

581/21/3-z 
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FIG. 11. Contours of W velocity at 100 time steps in the Kelvin-Hehnholtz case using the 
new extrapolation. The format is basically similar to that of Fig. 1 except that the area common 
to both fields now begins at the left boundary. 

will grow at least 10 times the value at 100 time steps. Figure 12 shows the contours 
of vertical velocity (the contour intervals being different from Fig. 12 to Fig. 11). 
At this point, the spatial growing behavior of the waves is more evident. The 
contours of total temperature for this time in Fig. 13 show the patterns of the 
upper and lower solutions to be quite similar. The closed contours seen in the 
upper figure are not of signficant meaning since the solution in the region where 
they occur is practically flat and any small disturbances will create this observed 
pattern. 

The next figure (Fig. 14) shows the temperature contours at 250 time steps 
(1250 set). The upper figure effectively shows the spatial wave growth and the 
tendency for the wave to roll as seen in observational and experimental studies 
(Metcalf and Atlas [8], Delisi and Corcos [9], etc.) Even at this stage of a fully 
developed wave, it seems that the open boundary condition (2.2) in the smaller 
region L = 41dx permits a very accurate simulation of the K-H process. 

In Fig. 15, a plot of temperature amplitude as a function of time is shown for 
both large and small domains at some point near the outflow boundary of the 
L = 41dx case. Again the agreement is remarkably good. 



FIG. 12. As in Fig. 11, but at 200 time steps. 
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FIG. 13. As in Fig. 12, but for temperature. 



TEMEPATURE 
I-- 

_____-. ~____,__ _......... -. 
I 
I 

I , 

f 
I 
I 

L .__.. __-c_---l-- .--.-. -.--2 

I- NE 

FIG. 14. As in Fig. 13, but at 250 time steps. 
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FIG. 15. A comparison of history records in the K-H case for the time variation of temperat- 
ure. The history checkpoint is at I = 35 and J = 26. 
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6. CONCLUSION 

A Sommerfeld radiation condition (2.2) in which a numerical evaluation of a 
phase velocity is performed in the vicinity of the boundary and extrapolated to that 
point is proposed for problems requiring a prescribed open boundary. The equa- 
tions must be hyperbolic in nature (although the author believes that they may also 
be good for some elliptic and parabolic problems). 

It was proven that the proposed condition was free of reflection for single wave 
propagation. 

Two severe tests were used to demonstrate the applicability of the open boundary 
condition: 

(i) The collapsing bubble, a dynamic event which excites many different 
internal gravity waves. The results show minimum distortion. 

(ii) The spatially growing K-H instability. This test differs from the previous 
one in that the only waves excited are those corresponding to the maximum 
unstable wavelengths. In this case, the maximum amplitude is reached at the open 
boundary as has been shown, and the open boundary condition (2.2) behaves very 
well. 
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